Divergence stability in connection with the p-version of the finite element method
نویسندگان
چکیده
— Many problems in continuüm mechanics involve an incompressibility condition, usually in the form of a divergence constraint. The numerical discretization of such a constraint présents some interesting problems with regard to stabïlity. In this paper we analyze certain stability properties, typical of high degree, conforming finite element approximations for problems with a divergence constraint, The results in this paper complement the results already published in [18] and [24]. Resumé. — De nombreux problèmes en mécanique des milieux continus font appel à une condition d'incompressibilité, le plus souvent sous forme d'une contrainte sur l'opérateur de divergence. La discrétisation numérique d'une contrainte présente quelques problèmes intéressants en ce qui concerne la stabilité. Dans cet article nous analysons certaines des propriétés les plus courantes qui découlent des approximations, par des méthodes d'éléments finis conformes de degré élevé, dans le cadre de problèmes soumis à cette contrainte sur l'opérateur de divergence. Les résultats de cet article complètent les résultats déjà publiés dans les références [18] et [24]. 0. INTRODUCTION Many problems in continuüm mechanics involve an incompressibility condition, usually in the form of a divergence constraint. The numerical discretization of such a constraint présents some interesting problems with regard to stability. As an important exemple we consider the two-dimensional Stokes équations . -AU+WP = F i n f t ç R 2 , V' U = 0 in £ï , (*) Received in June 1989. This research was partially supported by ONR contract N00014-87-K-0427 (S.J.), ONR contract N00014-85-K-0169, NSF grant DMS-8601490 and the Sloan Foundation (M.V.). () Department of Mathematics, University of Maryland, Baltimore, MD 21228, U.S.A. () Department of Mathematics, Rutgers University, New Brunswick, N.J. 08903, U.S.A. MAN Modélisation mathématique et Analyse numérique 0764-583X/90/06/737/28/$ 4.80 Mathematical Modelling and Numerical Analysis (§) AFCET Gauthier-Villars 738 S. JENSEN, M. VOGELIUS with appropriate boundary conditions on BO. This has the standard weak formulation (2) Find U e iT ç [H(D,)] and P e HT c L (fl) such that a(U9 v) + b(v,P) = (£, v) Vve-T b(U,q) = 0 VqeiT. The bilinear forms a and b are given by
منابع مشابه
On the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملStudy of the Effect of an Open Transverse Crack on the Vibratory Behavior of Rotors Using the h-p Version of the Finite Element Method
In this paper, we use the hybrid h-p version of the finite element method to study the effect of an open transverse crack on the vibratory behavior of rotors, the one-dimensional finite element Euler-Bernoulli beam is used for modeling the rotor, the shape functions used are the Hermite cubic functions coupled to the special Legendre polynomials of Rodrigues. The global matrices of the equation...
متن کاملبررسی رفتار و طراحی اتصال خمشی با ورق انتهایی هم تراز به روش اجزاء محدود تحت بارگذاری متناوب
The use of steel flush end-plate moment connection is practiced in the construction of the light steel frames around the world particularly in parts of Europe and US. In the past most research was concentrated on studying the behavior of the flush end-plate connection subjected to only monotonic type loadings. The majority of that research carried out such investigation through experimental pro...
متن کاملSpectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملNonlinear inelastic static analysis of plane frames with numerically generated tangent stiffness matrices
For the nonlinear analysis of structures using the well known Newton-Raphson Method, the tangent stiffness matrices of the elements must be constructed in each iteration. Due to the high expense required to find the exact tangent stiffness matrices, researchers have developed novel innovations into the Newton-Raphson method to reduce the cost and time required by the analysis. In this paper, a ...
متن کاملAppropriate Loading Techniques in Finite Element Analysis of Underground Structures
Stability of underground structures is assessed by comparing rock strength with induced stresses resulted from ground stresses. Rock mass surrounding the opening may fail either by fracture or excessive deformation caused. Accurate calculation of induced stresses is therefore fundamental in the stability analysis of an opening. Although numerical methods, particularly finite element method, are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017